
Fractureiser 
Attack on Minecraft mods

A meeting was held to discuss possible ways to prevent similar attacks in the future. Two prevalent

attack surfaces which could be improved were:

First, strengthening CurseForge by means such as forcing 2-factor authentication for uploads, requiring source
code and building and hosting jars with CI, and signing the built files to prevent hijacks. The benefit of these
were weighted against factors such as the potential cost of the CI infrastructure and onboarding difficulty for
new developers.

Second, preventing loading of remote code. There are both legit use-cases for downloading external code, such as
automatic updates at launch, as well as malicious use-cases such as used by Fractureiser. I claim that a tool
such as SBOM.exe, as presented by Aman Sharma, which allows only classes defined beforehand to be loaded could
allow external loading while blocking malicious attempts to silently download and run code.

What was Fractureiser?
Fractureiser was a virus spread through the
Minecraft modding scene in 2023. It abused
lacking security measures in the mod-sharing
platform CurseForge, enabling the hacker to add
dependencies on malicious code.
 

 To obfuscate itself, make infected systems

 permanently affected, and spread further it

 split the execution into multiple stages,

 each stage infecting the system further and

 progressing to the next stage.

 Many of the stages loaded code remotely

 in Java, allowing the hacker to update

 and change the payload on already

 affected systems.

Mitigation and future
prevention

[1] Fractureiser Technical Info | Available at:

https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/tech.md 
[2] Fractureiser Mitigation Meeting | Available at:

https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/2023-06-08-meeting.md 
[3] Images from Minecraft wiki | Available at: https://minecraft.wiki

Developers with contaminated

 systems uploads infected

 .jar’s by mistake, thus

spreading it further

in the ecosystem.

Hacker compromises login information
for authors of popular mod-packs on
CurseForge and adds dependencies on
malicious mods. By archiving the
update it is hidden from the website
interface and the change is undetected
by the authors.

Infected .jar’s
contains bootstrap code
that loads and executes
a remote class using
java’s URLClassLoader.

The URLClassLoader
loads the class from a
server controlled by
the hacker.

The newly loaded class connects to
another IP controlled by the
malicious agent, downloads a new
jar-file called [lib.jar] and tries
to schedule it to run at OS
(re-)boots using SystemD or Windows
REGISTRY/Start Menu-Startup folder.

[lib.jar] connects to yet another
malicious server, downloads and
runs [client.jar]. Periodically
checking with the server if
[client.jar]’s HASH has changed.
This way the attacker can update
the payload on already infected
systems.

[client.jar] steals login credentials, cookies,
sessions tokens, crypto wallets, clipboard content,
etc. It also finds and inserts the bootstrap code into
other jars on the system.

Elias Lundell

ellundel@kth.se

https://github.com/logflames/

Stage-by-stage Overview

Mod-pack is downloaded
and ran by users.

More information and details from the
Fractureiser Mitigation Team is available at:

https://github.com/fractureiser-investigation/
fractureiser.

Stage 0

Stage 2

Stage 3

Stage 1

https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/tech.md
https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/2023-06-08-meeting.md
https://minecraft.wiki
mailto:ellundel@kth.se
https://github.com/logflames/
https://github.com/fractureiser-investigation/fractureiser
https://github.com/fractureiser-investigation/fractureiser

