
SBOM2Sandbox*
Eric Cornelissen, KTH

*working title

Outline

Using SBOMs for sandboxing purposes in Node.js

● Background
● Solution
● Conclusion

Background

Third-party Dependencies

● ~2.8 million packages (2024) [1]
● ~2.6 trillion download requests (2023) [2]
● ~79 transitive dependencies (2019) [3]

[1]: https://www.npmjs.com/ (accessed April 2024)

[2]: "9th Annual State of the Software Supply Chain". Sonatype. 2023. (page 10)

[3]: Zimmermann, Markus, et al. "Small world with high risks: A study of security threats in the npm ecosystem." 28th USENIX Security Symposium (USENIX Security 19). 2019.

https://www.npmjs.com/

Third-party Dependencies

● ~2.8 million packages (2024) [1]
● ~2.6 trillion download requests (2023) [2]
● ~79 transitive dependencies (2019) [3]
● No limit on what third-party dependencies can do

[1]: https://www.npmjs.com/ (accessed April 2024)

[2]: "9th Annual State of the Software Supply Chain". Sonatype. 2023. (page 10)

[3]: Zimmermann, Markus, et al. "Small world with high risks: A study of security threats in the npm ecosystem." 28th USENIX Security Symposium (USENIX Security 19). 2019.

https://www.npmjs.com/

Examples

● eventstream — Env vars, File system, Network (malicious)

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident

Examples

● eventstream — Env vars, File system, Network (malicious)
● ejs — Remote code execution (vulnerability) [1]

[1]: Vasilakis, Nikos, et al. "BreakApp: Automated, Flexible Application Compartmentalization." NDSS. 2018.

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://security.snyk.io/vuln/SNYK-JS-EJS-2803307

Examples

● eventstream — Env vars, File system, Network (malicious)
● ejs — Remote code execution (vulnerability) [1]
● eslint-scope — File system, Network (malicious) [2]

[1]: Vasilakis, Nikos, et al. "BreakApp: Automated, Flexible Application Compartmentalization." NDSS. 2018.

[2]: Ferreira, Gabriel, et al. "Containing malicious package updates in npm with a lightweight permission system."

 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 2021.

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://security.snyk.io/vuln/SNYK-JS-EJS-2803307
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

Types of Problems

● Vulnerabilities
● Ambient authority
● Covert imports

Lead to

● Remote code execution
● Data leakage

SBOMs

● Software Bill Of Material
● Lists components
● Lists dependencies between components

SBOMs

● Software Bill Of Material
● Lists components
● Lists dependencies between components
● Problem: Incomplete & Coarse grained

Node.js

● JavaScript runtime targeting server development
● On top of V8 JavaScript engine
● Grants access to system resources
● New permission system

Solution

Overview

● Node.js Permission System
● SBOM
● Capabilities
● Language-level sandbox

Node.js Permission System

Node.js Permission System

● Module & Process

● Module & Process

Node.js Permission System

Node.js Permission System

● Module & Process
● Allowing, Blocking, Redirecting (+ integrity)

Node.js Permission System

● Module & Process
● Blocking, Allowing, Redirecting (+ integrity)
● Limitations

○ Module cache
○ Read and run
○ Modules only

Modules

● Dependencies from SBOM

Modules

● Dependencies from SBOM
● Allow* loading modules according to the dependency hierarchy

Modules

● Dependencies from SBOM
● Allow* loading modules according to the dependency hierarchy
● Built-in modules

○ Standard library (e.g. fs or child_process)
○ Proposal: CapabilityBOM (Capslock, Cackle)

https://github.com/google/capslock
https://github.com/cackle-rs/cackle

Modules

● Dependencies from SBOM
● Allow* loading modules according to the dependency hierarchy
● Built-in modules

○ Standard library (e.g. fs or child_process)
○ Proposal: CapabilityBOM (Capslock, Cackle)

● Enforcement and Confused Deputy

https://github.com/google/capslock
https://github.com/cackle-rs/cackle

Enforcement and Confused Deputy

Limits of Permission System

● Node.js Globals
○ Shared references available anywhere
○ Some are sensitive (e.g. fetch)
○ Some are dangerous (e.g. eval)

Limits of Permission System

● Node.js Globals
○ Shared references available anywhere
○ Some are sensitive (e.g. fetch)
○ Some are dangerous (e.g. eval)

● Module cache
○ Code-accessible cache of loaded module

Sandboxing

● Control Node.js Globals
○ Omit globals
○ Disable dynamic code evaluation

● Control Module Cache
○ Cache busting*

Sandboxing

● Control Node.js Globals
○ Omit globals
○ Disable dynamic code evaluation

● Control Module Cache
○ Cache busting

● Necessary imports for sandboxing
○ Requires access to at least the vm module
○ Hidden with randomization

● Breakouts
○ Break out - No globals, Policy, Randomization
○ Break in - future work

● Node.js Permission System *Redirects

Sandboxing - How?

Sandboxing - How?

● Node.js Permission System *Redirects
● Language level sandbox using vm

Sandbox

Scenario - Application

Scenario - Sandbox

Scenario - Prevention #1

Node.js permission system

Scenario - Prevention #2

Node.js permission system

Scenario - Prevention #3

Language-based sandbox

Limitations

● Experimental features
○ Permission system
○ ESM support in vm module

● Maintenance
○ CJS and ESM specific behavior

● Sandbox breakouts due to bugs

Conclusion

Conclusion

● SBOMs for Sandboxing Node.js Applications
● Limitations of SBOM for Sandboxing
● Difficulty of Sandboxing in Node.js
● Future work

○ Full implementation and hardening
○ CapabilityBOM specification
○ Fine grained sandboxing

End
Eric Cornelissen, KTH (ericco@kth.se)

